Lecture 19

More on Hollow Waveguides

19.1 Rectangular Waveguides, Contd.

19.1.1 TM Modes (E Modes or $E_z \neq 0$ Modes)

The above exercise for TE modes can be repeated for the TM modes. The scalar wave function (or eigenfunction/eigenmode) for the TM modes is

$$\Psi_{es}(x,y) = A\sin\left(\frac{m\pi}{a}x\right)\sin\left(\frac{n\pi}{b}y\right)$$
(19.1.1)

Here, sine functions are chosen for the standing waves, and the chosen values of β_x and β_y ensure that the homogeneous Dirichlet boundary condition is satisfied on the entire waveguide wall. Neither of the *m* and *n* can be zero, lest the field is zero. In this case, both m > 0, and n > 0 are needed. Thus, the lowest TM mode is the TM₁₁ mode. Notice here that the eigenvalue is

$$\beta_s^2 = \beta_x^2 + \beta_y^2 = \left(\frac{m\pi}{a}\right)^2 + \left(\frac{n\pi}{b}\right)^2$$
(19.1.2)

Therefore, the corresponding cutoff frequencies and cutoff wavelengths for the TM_{mn} modes are the same as the TE_{mn} modes. These modes are degenerate in this case. For the lowest modes, TE_{11} and TM_{11} modes have the same cutoff frequency. Figure 19.1 shows the dispersion curves for different modes of a rectangular waveguide. Notice that the group velocities of all the modes are zero at cutoff, and then the group velocities approach that of the waveguide medium as frequency becomes large. These observations can be explained physically.

Figure 19.1: Dispersion curves for a rectangular waveguide. Notice that the lowest TM mode is the TM₁₁ mode, and k is equivalent to β in this course (courtesy of J.A. Kong [31]).

19.1.2 Bouncing Wave Picture

We have seen that the transverse variation of a mode in a rectangular waveguide can be expanded in terms of sine and cosine functions which represent standing waves, or that they are

$$\left[\exp(-j\beta_x x) \pm \exp(j\beta_x x)\right] \left[\exp(-j\beta_y y) \pm \exp(j\beta_y y)\right]$$

When the above is expanded and together with the $\exp(-j\beta_z z)$ the mode propagating in the z direction, we see four waves bouncing around in the xy directions and propagating in the z direction. The picture of this bouncing wave can be depicted in Figure 19.2.

Figure 19.2: The waves in a rectangular waveguide can be thought of as bouncing waves off the four walls as they propagate in the z direction.

19.1.3 Field Plots

Plots of the fields of different rectangular waveguide modes are shown in Figure 19.3. Higher frequencies are needed to propagate the higher order modes or the high m and n modes. Notice that for higher m's and n's, the transverse wavelengths are getting shorter, implying that β_x and β_y are getting larger because of the higher frequencies involved.

Notice also how the electric field and magnetic field curl around each other. Since $\nabla \times \mathbf{H} = j\omega\varepsilon\mathbf{E}$ and $\nabla \times \mathbf{E} = -j\omega\mu\mathbf{H}$, they do not curl around each other "immediately" but with a $\pi/2$ phase delay due to the $j\omega$ factor. Therefore, the **E** and **H** fields do not curl around each other at one location, but at a displaced location due to the $\pi/2$ phase difference. This is shown in Figure 19.4.

Figure 19.3: Transverse field plots of different modes in a rectangular waveguide (courtesy of Andy Greenwood. Original plots published in Lee, Lee, and Chuang, IEEE T-MTT, 33.3 (1985): pp. 271-274. [105]).

Figure 19.4: Field plot of a mode propagating in the z direction of a rectangular waveguide. Notice that the E and H fields do not exactly curl around each other.

19.2 Circular Waveguides

Another waveguide where closed-form solutions can be easily obtained is the circular hollow waveguide as shown in Figure 19.5.

Figure 19.5: Schematic of a circular waveguide.

19.2.1 TE Case

For a circular waveguide, it is best first to express the Laplacian operator, $\nabla_s^2 = \nabla_s \cdot \nabla_s$, in cylindrical coordinates. Such formulas are given in [31, 106]. Doing a table lookup, $\nabla_s \Psi =$

More on Hollow Waveguides

$$\hat{\rho}\frac{\partial}{\partial\rho}\Psi + \hat{\phi}\frac{1}{\rho}\frac{\partial}{\partial\phi}, \nabla_s \cdot \mathbf{A} = \frac{1}{\rho}\frac{\partial}{\partial\rho}\rho A_\rho + \frac{1}{\rho}\frac{\partial}{\partial\phi}A_\phi. \text{ Then}$$
$$\left(\nabla_s^2 + \beta_s^2\right)\Psi_{hs} = \left(\frac{1}{\rho}\frac{\partial}{\partial\rho}\rho\frac{\partial}{\partial\rho} + \frac{1}{\rho^2}\frac{\partial^2}{\partial\phi^2} + \beta_s^2\right)\Psi_{hs}(\rho,\phi) = 0 \tag{19.2.1}$$

The above is the partial differential equation for field in a circular waveguide. Using separation of variables, we let

$$\Psi_{hs}(\rho,\phi) = B_n(\beta_s\rho)e^{\pm jn\phi} \tag{19.2.2}$$

Then $\frac{\partial^2}{\partial \phi^2} \to -n^2$, and (19.2.1) becomes an ordinary differential equation which is

$$\left(\frac{1}{\rho}\frac{d}{d\rho}\rho\frac{d}{d\rho} - \frac{n^2}{\rho^2} + \beta_s^2\right)B_n(\beta_s\rho) = 0$$
(19.2.3)

Here, we can let $\beta_s \rho$ in (19.2.2) and (19.2.3) be x. Then the above can be rewritten as

$$\left(\frac{1}{x}\frac{d}{dx}x\frac{d}{dx} - \frac{n^2}{x^2} + 1\right)B_n(x) = 0$$
(19.2.4)

The above is known as the Bessel equation whose solutions are special functions denoted as $B_n(x)$.

These special functions are $J_n(x)$, $N_n(x)$, $H_n^{(1)}(x)$, and $H_n^{(2)}(x)$ which are called Bessel, Neumann, Hankel fuction of the first kind, and Hankel function of the second kind, respectively, where n is the order, and x is the argument.¹ Since this is a second order ordinary differential equation, it has only two independent solutions. Therefore, two of the four commonly encountered solutions of Bessel equation are independent. Therefore, they can be expressed then in term of each other. Their relationships are shown below:²

Bessel,
$$J_n(x) = \frac{1}{2} [H_n^{(1)}(x) + H_n^{(2)}(x)]$$
 (19.2.5)

Neumann,
$$N_n(x) = \frac{1}{2j} [H_n^{(1)}(x) - H_n^{(2)}(x)]$$
 (19.2.6)

Hankel–First kind,
$$H_n^{(1)}(x) = J_n(x) + jN_n(x)$$
(19.2.7)

Hankel–Second kind,
$$H_n^{(2)}(x) = J_n(x) - jN_n(x)$$
(19.2.8)

It can be shown that

$$H_n^{(1)}(x) \sim \sqrt{\frac{2}{\pi x}} e^{jx - j(n + \frac{1}{2})\frac{\pi}{2}}, \quad x \to \infty$$
 (19.2.9)

$$H_n^{(2)}(x) \sim \sqrt{\frac{2}{\pi x}} e^{-jx+j(n+\frac{1}{2})\frac{\pi}{2}}, \quad x \to \infty$$
 (19.2.10)

They correspond to traveling wave solutions when $x = \beta_s \rho \to \infty$. Since $J_n(x)$ and $N_n(x)$ are linear superpositions of these traveling wave solutions, they correspond to standing wave

¹Some textbooks use $Y_n(x)$ for Neumann functions.

²Their relations with each other are similar to those between $\exp(-jx)$, $\sin(x)$, and $\cos(x)$.

solutions. Moreover, $N_n(x)$, $H_n^{(1)}(x)$, and $H_n^{(2)}(x) \to \infty$ when $x \to 0$. Since the field has to be regular when $\rho \to 0$ at the center of the waveguide shown in Figure 19.5, the only viable solution for the waveguide is that $B_n(\beta_s \rho) = A J_n(\beta_s \rho)$. Thus for a circular hollow waveguide, the eigenfunction or mode is of the form

$$\Psi_{hs}(\rho,\phi) = A J_n(\beta_s \rho) e^{\pm j n \phi} \tag{19.2.11}$$

To ensure that the eigenfunction and the eigenvalue are unique, boundary condition for the partial differential equation is needed. The homogeneous Neumann boundary condition on the PEC waveguide wall then translates to

$$\frac{d}{d\rho}J_n(\beta_s\rho) = 0, \quad \rho = a \tag{19.2.12}$$

Defining $J_n'(x) = \frac{d}{dx}J_n(x)$, the above is the same as

$$J_n'(\beta_s a) = 0 \tag{19.2.13}$$

Plots of Bessel functions and their derivatives are shown in Figure 19.6. The above are the zeros of the derivative of Bessel function and they are tabulated in many textbooks. The *m*-th zero of $J_n'(x)$ is denoted to be β_{nm} in many books,³ and some of them are also shown in Figure 19.7; and hence, the guidance condition for a waveguide mode is then

$$\beta_s = \beta_{nm}/a \tag{19.2.14}$$

for the TE_{nm} mode. From the above, β_s^2 can be obtained which is the eigenvalue of (19.2.1) and (19.2.3). Using the fact that $\beta_z = \sqrt{\beta^2 - \beta_s^2}$, then β_z will become pure imaginary if β^2 is small enough so that $\beta^2 < \beta_s^2$ or $\beta < \beta_s$. From this, the corresponding cutoff frequency of the TE_{nm} mode is

$$\omega_{nm,c} = \frac{1}{\sqrt{\mu\varepsilon}} \frac{\beta_{nm}}{a} \tag{19.2.15}$$

When $\omega < \omega_{nm,c}$, the corresponding mode cannot propagate in the waveguide as β_z becomes pure imaginary. The corresponding cutoff wavelength is

$$\lambda_{nm,c} = \frac{2\pi}{\beta_{nm}}a\tag{19.2.16}$$

By the same token, when $\lambda > \lambda_{nm,c}$, the corresponding mode cannot be guided by the waveguide. It is not exactly precise to say this, but this gives us the heuristic notion that if wavelength or "size" of the wave or photon is too big, it cannot fit inside the waveguide.

 $^{^{3}}$ Notably, Abramowitz and Stegun, Handbook of Mathematical Functions [107]. An online version is available at [108].

19.2.2 TM Case

The corresponding partial differential equation and boundary value problem for this case is

$$\left(\frac{1}{\rho}\frac{\partial}{\partial\rho}\rho\frac{\partial}{\partial\rho} + \frac{1}{\rho^2}\frac{\partial^2}{\partial\phi^2} + \beta_s^2\right)\Psi_{es}(\rho,\phi) = 0$$
(19.2.17)

with the homogeneous Dirichlet boundary condition, $\Psi_{es}(a, \phi) = 0$, on the waveguide wall. The eigenfunction solution is

$$\Psi_{es}(\rho,\phi) = A J_n(\beta_s \rho) e^{\pm j n \phi} \tag{19.2.18}$$

with the boundary condition that $J_n(\beta_s a) = 0$. The zeros of $J_n(x)$ are labeled as α_{nm} is many textbooks, as well as in Figure 19.7; and hence, the guidance condition is that for the TM_{nm} mode is that

$$\beta_s = \frac{\alpha_{nm}}{a} \tag{19.2.19}$$

where the eigenvalue for (19.2.17) is β_s^2 . With $\beta_z = \sqrt{\beta^2 - \beta_s^2}$, the corresponding cutoff frequency is

$$\omega_{nm,c} = \frac{1}{\sqrt{\mu\varepsilon}} \frac{\alpha_{nm}}{a} \tag{19.2.20}$$

or when $\omega < \omega_{nm,c}$, the mode cannot be guided. The cutoff wavelength is

$$\lambda_{nm,c} = \frac{2\pi}{\alpha_{nm}}a\tag{19.2.21}$$

with the notion that when $\lambda > \lambda_{nm,c}$, the mode cannot be guided.

It turns out that the lowest mode in a circular waveguide is the TE₁₁ mode. It is actually a close cousin of the TE₁₀ mode of a rectangular waveguide. Figure 19.6 shows the plot of Bessel function $J_n(x)$ and its derivative $J'_n(x)$. Tables in Figure 19.7 show the roots of $J'_n(x)$ and $J_n(x)$ which are important for determining the cutoff frequencies of the TE and TM modes of circular waveguides.

Figure 19.6: Plots of the Bessel function, $J_n(x)$, and its derivatives $J'_n(x)$.

Table 2.3.1. Roots of $J'_{n}(x) = 0$.							
n	β_{n1}	β_{n2}	β_{n3}	β_{n4}			
0	3.832	7.016	10.174	13.324			
1	1.841	5.331	8.536	11.706			
2	3.054	6.706	9.970	13.170			
3	4.201	8.015	11.346	14.586			
4	5.318	9.282	12.682	15.964			
5	6.416	10.520	13.987	17.313			

Table 2.3.2. Roots of $J_n(x) = 0$.

n	α_{n1}	α_{n2}	α_{n3}	α_{n4}
0	2.405	5.520	8.654	11.792
1	3.832	7.016	10.174	13.324
2	5.135	8.417	11.620	14.796
3	6.380	9.761	13.015	16.223
4	7.588	11.065	14.373	17.616
5	8.771	12.339	15.700	18.980

Figure 19.7: Table 2.3.1 shows the zeros of $J'_n(x)$, which are useful for determining the guidance conditions of the TE_{mn} mode of a circular waveguide. On the other hand, Table 2.3.2 shows the zeros of $J_n(x)$, which are useful for determining the guidance conditions of the TM_{mn} mode of a circular waveguide.

Figure 19.8: Transverse field plots of different modes in a circular waveguide (courtesy of Andy Greenwood. Original plots published in Lee, Lee, and Chuang [105]).

Bibliography

- [1] J. A. Kong, *Theory of electromagnetic waves*. New York, Wiley-Interscience, 1975.
- [2] A. Einstein *et al.*, "On the electrodynamics of moving bodies," Annalen der Physik, vol. 17, no. 891, p. 50, 1905.
- [3] P. A. M. Dirac, "The quantum theory of the emission and absorption of radiation," Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, vol. 114, no. 767, pp. 243–265, 1927.
- [4] R. J. Glauber, "Coherent and incoherent states of the radiation field," *Physical Review*, vol. 131, no. 6, p. 2766, 1963.
- [5] C.-N. Yang and R. L. Mills, "Conservation of isotopic spin and isotopic gauge invariance," *Physical review*, vol. 96, no. 1, p. 191, 1954.
- [6] G. t'Hooft, 50 years of Yang-Mills theory. World Scientific, 2005.
- [7] C. W. Misner, K. S. Thorne, and J. A. Wheeler, *Gravitation*. Princeton University Press, 2017.
- [8] F. Teixeira and W. C. Chew, "Differential forms, metrics, and the reflectionless absorption of electromagnetic waves," *Journal of Electromagnetic Waves and Applications*, vol. 13, no. 5, pp. 665–686, 1999.
- [9] W. C. Chew, E. Michielssen, J.-M. Jin, and J. Song, Fast and efficient algorithms in computational electromagnetics. Artech House, Inc., 2001.
- [10] A. Volta, "On the electricity excited by the mere contact of conducting substances of different kinds. in a letter from Mr. Alexander Volta, FRS Professor of Natural Philosophy in the University of Pavia, to the Rt. Hon. Sir Joseph Banks, Bart. KBPR S," *Philosophical transactions of the Royal Society of London*, no. 90, pp. 403–431, 1800.
- [11] A.-M. Ampère, Exposé méthodique des phénomènes électro-dynamiques, et des lois de ces phénomènes. Bachelier, 1823.
- [12] —, Mémoire sur la théorie mathématique des phénomènes électro-dynamiques uniquement déduite de l'expérience: dans lequel se trouvent réunis les Mémoires que M. Ampère a communiqués à l'Académie royale des Sciences, dans les séances des 4 et

26 décembre 1820, 10 juin 1822, 22 décembre 1823, 12 septembre et 21 novembre 1825. Bachelier, 1825.

- [13] B. Jones and M. Faraday, *The life and letters of Faraday*. Cambridge University Press, 2010, vol. 2.
- [14] G. Kirchhoff, "Ueber die auflösung der gleichungen, auf welche man bei der untersuchung der linearen vertheilung galvanischer ströme geführt wird," Annalen der Physik, vol. 148, no. 12, pp. 497–508, 1847.
- [15] L. Weinberg, "Kirchhoff's' third and fourth laws'," IRE Transactions on Circuit Theory, vol. 5, no. 1, pp. 8–30, 1958.
- [16] T. Standage, The Victorian Internet: The remarkable story of the telegraph and the nineteenth century's online pioneers. Phoenix, 1998.
- [17] J. C. Maxwell, "A dynamical theory of the electromagnetic field," *Philosophical trans*actions of the Royal Society of London, no. 155, pp. 459–512, 1865.
- [18] H. Hertz, "On the finite velocity of propagation of electromagnetic actions," *Electric Waves*, vol. 110, 1888.
- [19] M. Romer and I. B. Cohen, "Roemer and the first determination of the velocity of light (1676)," Isis, vol. 31, no. 2, pp. 327–379, 1940.
- [20] A. Arons and M. Peppard, "Einstein's proposal of the photon concept-a translation of the Annalen der Physik paper of 1905," *American Journal of Physics*, vol. 33, no. 5, pp. 367–374, 1965.
- [21] A. Pais, "Einstein and the quantum theory," *Reviews of Modern Physics*, vol. 51, no. 4, p. 863, 1979.
- [22] M. Planck, "On the law of distribution of energy in the normal spectrum," Annalen der physik, vol. 4, no. 553, p. 1, 1901.
- [23] Z. Peng, S. De Graaf, J. Tsai, and O. Astafiev, "Tuneable on-demand single-photon source in the microwave range," *Nature communications*, vol. 7, p. 12588, 2016.
- [24] B. D. Gates, Q. Xu, M. Stewart, D. Ryan, C. G. Willson, and G. M. Whitesides, "New approaches to nanofabrication: molding, printing, and other techniques," *Chemical reviews*, vol. 105, no. 4, pp. 1171–1196, 2005.
- [25] J. S. Bell, "The debate on the significance of his contributions to the foundations of quantum mechanics, Bells Theorem and the Foundations of Modern Physics (A. van der Merwe, F. Selleri, and G. Tarozzi, eds.)," 1992.
- [26] D. J. Griffiths and D. F. Schroeter, Introduction to quantum mechanics. Cambridge University Press, 2018.
- [27] C. Pickover, Archimedes to Hawking: Laws of science and the great minds behind them. Oxford University Press, 2008.

- [28] R. Resnick, J. Walker, and D. Halliday, Fundamentals of physics. John Wiley, 1988.
- [29] S. Ramo, J. R. Whinnery, and T. Duzer van, Fields and waves in communication electronics, Third Edition. John Wiley & Sons, Inc., 1995.
- [30] J. L. De Lagrange, "Recherches d'arithmétique," Nouveaux Mémoires de l'Académie de Berlin, 1773.
- [31] J. A. Kong, *Electromagnetic Wave Theory*. EMW Publishing, 2008.
- [32] H. M. Schey, Div, grad, curl, and all that: an informal text on vector calculus. WW Norton New York, 2005.
- [33] R. P. Feynman, R. B. Leighton, and M. Sands, The Feynman lectures on physics, Vols. I, II, & III: The new millennium edition. Basic books, 2011, vol. 1,2,3.
- [34] W. C. Chew, Waves and fields in inhomogeneous media. IEEE press, 1995.
- [35] V. J. Katz, "The history of Stokes' theorem," Mathematics Magazine, vol. 52, no. 3, pp. 146–156, 1979.
- [36] W. K. Panofsky and M. Phillips, *Classical electricity and magnetism*. Courier Corporation, 2005.
- [37] T. Lancaster and S. J. Blundell, Quantum field theory for the gifted amateur. OUP Oxford, 2014.
- [38] W. C. Chew, "Fields and waves: Lecture notes for ECE 350 at UIUC," https://engineering.purdue.edu/wcchew/ece350.html, 1990.
- [39] C. M. Bender and S. A. Orszag, Advanced mathematical methods for scientists and engineers I: Asymptotic methods and perturbation theory. Springer Science & Business Media, 2013.
- [40] J. M. Crowley, Fundamentals of applied electrostatics. Krieger Publishing Company, 1986.
- [41] C. Balanis, Advanced Engineering Electromagnetics. Hoboken, NJ, USA: Wiley, 2012.
- [42] J. D. Jackson, *Classical electrodynamics*. John Wiley & Sons, 1999.
- [43] R. Courant and D. Hilbert, Methods of Mathematical Physics: Partial Differential Equations. John Wiley & Sons, 2008.
- [44] L. Esaki and R. Tsu, "Superlattice and negative differential conductivity in semiconductors," *IBM Journal of Research and Development*, vol. 14, no. 1, pp. 61–65, 1970.
- [45] E. Kudeki and D. C. Munson, Analog Signals and Systems. Upper Saddle River, NJ, USA: Pearson Prentice Hall, 2009.
- [46] A. V. Oppenheim and R. W. Schafer, Discrete-time signal processing. Pearson Education, 2014.

- [47] R. F. Harrington, Time-harmonic electromagnetic fields. McGraw-Hill, 1961.
- [48] E. C. Jordan and K. G. Balmain, *Electromagnetic waves and radiating systems*. Prentice-Hall, 1968.
- [49] G. Agarwal, D. Pattanayak, and E. Wolf, "Electromagnetic fields in spatially dispersive media," *Physical Review B*, vol. 10, no. 4, p. 1447, 1974.
- [50] S. L. Chuang, *Physics of photonic devices*. John Wiley & Sons, 2012, vol. 80.
- [51] B. E. Saleh and M. C. Teich, Fundamentals of photonics. John Wiley & Sons, 2019.
- [52] M. Born and E. Wolf, *Principles of optics: electromagnetic theory of propagation, in*terference and diffraction of light. Elsevier, 2013.
- [53] R. W. Boyd, Nonlinear optics. Elsevier, 2003.
- [54] Y.-R. Shen, The principles of nonlinear optics. New York, Wiley-Interscience, 1984.
- [55] N. Bloembergen, Nonlinear optics. World Scientific, 1996.
- [56] P. C. Krause, O. Wasynczuk, and S. D. Sudhoff, Analysis of electric machinery. McGraw-Hill New York, 1986.
- [57] A. E. Fitzgerald, C. Kingsley, S. D. Umans, and B. James, *Electric machinery*. McGraw-Hill New York, 2003, vol. 5.
- [58] M. A. Brown and R. C. Semelka, MRI.: Basic Principles and Applications. John Wiley & Sons, 2011.
- [59] C. A. Balanis, Advanced engineering electromagnetics. John Wiley & Sons, 1999.
- [60] Wikipedia, "Lorentz force," https://en.wikipedia.org/wiki/Lorentz_force/, accessed: 2019-09-06.
- [61] R. O. Dendy, Plasma physics: an introductory course. Cambridge University Press, 1995.
- [62] P. Sen and W. C. Chew, "The frequency dependent dielectric and conductivity response of sedimentary rocks," *Journal of microwave power*, vol. 18, no. 1, pp. 95–105, 1983.
- [63] D. A. Miller, Quantum Mechanics for Scientists and Engineers. Cambridge, UK: Cambridge University Press, 2008.
- [64] W. C. Chew, "Quantum mechanics made simple: Lecture notes for ECE 487 at UIUC," http://wcchew.ece.illinois.edu/chew/course/QMAll20161206.pdf, 2016.
- [65] B. G. Streetman and S. Banerjee, Solid state electronic devices. Prentice hall Englewood Cliffs, NJ, 1995.

- [66] Smithsonian, "This 1600-year-old goblet shows that the romans were nanotechnology pioneers," https://www.smithsonianmag.com/history/ this-1600-year-old-goblet-shows-that-the-romans-were-nanotechnology-pioneers-787224/, accessed: 2019-09-06.
- [67] K. G. Budden, Radio waves in the ionosphere. Cambridge University Press, 2009.
- [68] R. Fitzpatrick, Plasma physics: an introduction. CRC Press, 2014.
- [69] G. Strang, Introduction to linear algebra. Wellesley-Cambridge Press Wellesley, MA, 1993, vol. 3.
- [70] K. C. Yeh and C.-H. Liu, "Radio wave scintillations in the ionosphere," Proceedings of the IEEE, vol. 70, no. 4, pp. 324–360, 1982.
- [71] J. Kraus, *Electromagnetics*. McGraw-Hill, 1984.
- [72] Wikipedia, "Circular polarization," https://en.wikipedia.org/wiki/Circular_polarization.
- [73] Q. Zhan, "Cylindrical vector beams: from mathematical concepts to applications," Advances in Optics and Photonics, vol. 1, no. 1, pp. 1–57, 2009.
- [74] H. Haus, Electromagnetic Noise and Quantum Optical Measurements, ser. Advanced Texts in Physics. Springer Berlin Heidelberg, 2000.
- [75] W. C. Chew, "Lectures on theory of microwave and optical waveguides, for ECE 531 at UIUC," https://engineering.purdue.edu/wcchew/course/tgwAll20160215.pdf, 2016.
- [76] L. Brillouin, Wave propagation and group velocity. Academic Press, 1960.
- [77] R. Plonsey and R. E. Collin, Principles and applications of electromagnetic fields. McGraw-Hill, 1961.
- [78] M. N. Sadiku, *Elements of electromagnetics*. Oxford University Press, 2014.
- [79] A. Wadhwa, A. L. Dal, and N. Malhotra, "Transmission media," https://www. slideshare.net/abhishekwadhwa786/transmission-media-9416228.
- [80] P. H. Smith, "Transmission line calculator," *Electronics*, vol. 12, no. 1, pp. 29–31, 1939.
- [81] F. B. Hildebrand, Advanced calculus for applications. Prentice-Hall, 1962.
- [82] J. Schutt-Aine, "Experiment02-coaxial transmission line measurement using slotted line," http://emlab.uiuc.edu/ece451/ECE451Lab02.pdf.
- [83] D. M. Pozar, E. J. K. Knapp, and J. B. Mead, "ECE 584 microwave engineering laboratory notebook," http://www.ecs.umass.edu/ece/ece584/ECE584_lab_manual.pdf, 2004.
- [84] R. E. Collin, Field theory of guided waves. McGraw-Hill, 1960.

- [85] Q. S. Liu, S. Sun, and W. C. Chew, "A potential-based integral equation method for low-frequency electromagnetic problems," *IEEE Transactions on Antennas and Propagation*, vol. 66, no. 3, pp. 1413–1426, 2018.
- [86] M. Born and E. Wolf, Principles of optics: electromagnetic theory of propagation, interference and diffraction of light. Pergamon, 1986, first edition 1959.
- [87] Wikipedia, "Snell's law," https://en.wikipedia.org/wiki/Snell's_law.
- [88] G. Tyras, Radiation and propagation of electromagnetic waves. Academic Press, 1969.
- [89] L. Brekhovskikh, Waves in layered media. Academic Press, 1980.
- [90] Scholarpedia, "Goos-hanchen effect," http://www.scholarpedia.org/article/ Goos-Hanchen_effect.
- [91] K. Kao and G. A. Hockham, "Dielectric-fibre surface waveguides for optical frequencies," in *Proceedings of the Institution of Electrical Engineers*, vol. 113, no. 7. IET, 1966, pp. 1151–1158.
- [92] E. Glytsis, "Slab waveguide fundamentals," http://users.ntua.gr/eglytsis/IO/Slab_ Waveguides_p.pdf, 2018.
- [93] Wikipedia, "Optical fiber," https://en.wikipedia.org/wiki/Optical_fiber.
- [94] Atlantic Cable, "1869 indo-european cable," https://atlantic-cable.com/Cables/ 1869IndoEur/index.htm.
- [95] Wikipedia, "Submarine communications cable," https://en.wikipedia.org/wiki/ Submarine_communications_cable.
- [96] D. Brewster, "On the laws which regulate the polarisation of light by reflexion from transparent bodies," *Philosophical Transactions of the Royal Society of London*, vol. 105, pp. 125–159, 1815.
- [97] Wikipedia, "Brewster's angle," https://en.wikipedia.org/wiki/Brewster's_angle.
- [98] H. Raether, "Surface plasmons on smooth surfaces," in Surface plasmons on smooth and rough surfaces and on gratings. Springer, 1988, pp. 4–39.
- [99] E. Kretschmann and H. Raether, "Radiative decay of non radiative surface plasmons excited by light," *Zeitschrift für Naturforschung A*, vol. 23, no. 12, pp. 2135–2136, 1968.
- [100] Wikipedia, "Surface plasmon," https://en.wikipedia.org/wiki/Surface_plasmon.
- [101] Wikimedia, "Gaussian wave packet," https://commons.wikimedia.org/wiki/File: Gaussian_wave_packet.svg.
- [102] Wikipedia, "Charles K. Kao," https://en.wikipedia.org/wiki/Charles_K._Kao.
- [103] H. B. Callen and T. A. Welton, "Irreversibility and generalized noise," *Physical Review*, vol. 83, no. 1, p. 34, 1951.

- [104] R. Kubo, "The fluctuation-dissipation theorem," Reports on progress in physics, vol. 29, no. 1, p. 255, 1966.
- [105] C. Lee, S. Lee, and S. Chuang, "Plot of modal field distribution in rectangular and circular waveguides," *IEEE transactions on microwave theory and techniques*, vol. 33, no. 3, pp. 271–274, 1985.
- [106] W. C. Chew, Waves and Fields in Inhomogeneous Media. IEEE Press, 1996.
- [107] M. Abramowitz and I. A. Stegun, Handbook of mathematical functions: with formulas, graphs, and mathematical tables. Courier Corporation, 1965, vol. 55.
- [108] "Handbook of mathematical functions: with formulas, graphs, and mathematical tables."